Module Notes

Numerical Analysis

0
This module will not be offered for this semester
Faculty Member (Members)
dimako
Undergraduate
Spring
2nd Year
4th Semester (2nd Year, Spring)
Module Type
Background Courses
Module Category
Compulsory Modules
Course Code:
CHM_660
Course URL:
Credits:
5
ECTS Credits:
8
Module Availability on Erasmus Students:
No
Teaching Language:
Greek
Laboratory:
3h/W
Lectures:
3h/W
Τutorial:
1h/W
Project/Homework:
6/Semester
Teaching Type
Student's office hours:
Monday 5-8 pm - https://upatras-gr.zoom.us/j/96399119622?pwd=QkFTQmptRzcvbXE0U3NCWXlkZkZiZz09
Module Details

Ability for deep understanding of the fundamental numerical methods.

Ability to recognize the advantages and disadvantages of each method in order to decide the most convenient in use on application basis

Ability to use specific software in order to develop the necessary applications

Ability to analyze and interpret data

There are no prerequisite modules. It is, however, recommended that students should have a good knowledge of Mathematics (Calculus, Linear Algebra, Differential Equations) as well as fundamental skills on Scientific Programming)

Introduction (discretization, error analysis), Numerical Differentiation (forward, backward and central differences), Numerical Integration (trapezoid rule, Simpson rule, Newton-Cotes formulae), Interpolation/Extrapolation (Taylor, Lagrange polynomials), Numerical solution of algebraic equations (trial & error, bisection, Newton-Raphson), Numerical solution of linear systems (Gauss, Jacobi, Gauss-Seidel), Numerical Integration of Ordinary Differential Equations (Euler, Runge-Kutta), Finite Differences, Special Topics, Non-linear systems.

Teaching Organization

LECTURES: 3 h/w
RECITATION: 1 h/w
LAB/PRACTICE: 3 h/w
PROJECT/HOMEWORK: 6/semester

Total Module Workload (ECTS Standards):

123 Hours

1. Laboratory problem-solving by the students (35% of the final grade).

2. Written examination (open-book, 65% of the final grade).

1. Chapra S. & Canale R., “Numerical Methods for Engineers” (6th ed.), McGraw-Hill (2012)

2. Pozrikidis C., “Numerical Computation in Science and Engineering”, Oxford University Press, New York (1998).

3. Daoutidis P., Mastrogeorgopoulos, S. & Sidiropoulou, E. “Numerical Methods for engineering problems”, Anikoula Ed., Thessaloniki (2010), in Greek.