Module Notes

Technical Thermodynamics and Balances

0
This module will not be offered for this semester
Faculty Member (Members)
armaou,vlasis
Undergraduate
Fall
3rd Year
5th Semester (3rd Year, Fall)
Module Type
Core Chemical Engineering
Module Category
Compulsory Modules
Course Code:
CHM_540
Course URL:
Credits:
4
ECTS Credits:
6
Module Availability on Erasmus Students:
Yes
Teaching Language:
English/Greek
Laboratory:
Lectures:
3h/W
Τutorial:
2h/W
Project/Homework:
Teaching Type
Student's office hours:
Module Details

Apply principles and methods of General Chemistry, Physical Chemistry , Classical Thermodynamics and Calculus in solving Chemical Engineering Problems.

Ability to create models of any  process based on properly chosen control volumes and input/output  streams, and to subsequently solve them using the corresponding material, energy and entropy balances.

Mastering the use of key chemical engineering concepts, like model formulation and property-balances application  thereon,   in diverse technological areas.

Ability to appreciate the impact of engineering calculations (and the uncertainties thereof), when applied on problems involving critical economic, environmental and health/safety issues, via selected worked out  examples.

Students are expected to have basic knowledge from Mathematics, General and Inorganic Chemistry, Organic Chemistry, Thermodynamics I & II.

1. Brief summary of the concept of  Balances: Importance of Balances for Chemical Engineers  - Introduction to technical calculations.  

2. Material Balances: Applications to simple and complex systems with and without chemical reactions. Industrial applications (Recycle – Bypass - Purge). 

3. Calculations of thermodynamic property changes: Empirical equations of state. Multiparametric Corresponding States correlations (Lee- Kessler and Pitzer correlations - Nelson-Obert charts). Enthalpy and entropy change calculations from equations of state and  specific heat data. Thermodynamic charts, Steam Tables.  Calculating ΔΗ, ΔS using Corresponding States correlations to evaluate residual thermodynamic properties.

4. Material and Energy Balances:  Applications to systems with and without chemical reactions.

5. Entropy and an additional balance equation for closed and open systems. Calculation of entropy changes. Reversibility and irreversibility. Different forms of the 2nd thermodynamic law. Implications of the 2nd thermodynamic law for heat and work engines.

6. Some first applications of the entropy balance. Calculating if a process is possible or not. Availability and the maximum useful shaft work.

6. Combining material, energy and entropy balances. Thermodynamic analysis of processes. Power generation and refrigeration cycles: Carnot, Rankine, Stirling, Erickson, and Brayton cycles. Heat pumps. T-s and P-h diagrams. Thermodynamic efficiency. Isentropic coefficient. The Rankine cycle in the production of electric energy. The Linde process.

7. Explosions and their thermodynamics. 

Teaching Organization

LECTURES: 3 h/w
RECITATION: 2 h/w

Total Module Workload (ECTS Standards):

158 Hours

Final Written Exam

1. D.M.Himmelblau, J.B.Riggs, “Basic Principles and Calculations in Chemical Engineering”, 8th Edition (Transl. in Greek by G. Marnelos), Tziola Ed. (2015).

2. J.M.Smith, H.C. van Ness, M.M. Abbott, “Introduction to Chemical Engineering Thermodynamics”,  7th Edition in SI Units (Transl. in Greek by Α. Vronteli and P.Tsiakaras), Tziola Ed. (2011).

3. Υ.Α. Cengel, M.A.Boles, “Thermodynamics: An Engineering Approach”,  7th Edition in SI Units (Transl. in Greek by P.Tsiakaras, E.Kotsialos), Tziola Ed. (2011).